We use a suitable version of the so-called "kernel trick" to devise two-sample (homogeneity) tests, especially focussed on high-dimensional and functional data. Our proposal entails a simplification related to the important practical problem of selecting an appropriate kernel function. Specifically, we apply a uniform variant of the kernel trick which involves the supremum within a class of kernel-based distances. We obtain the asymptotic distribution (under the null and alternative hypotheses) of the test statistic. The proofs rely on empirical processes theory, combined with the delta method and Hadamard (directional) differentiability techniques, and functional Karhunen-Lo\`eve-type expansions of the underlying processes. This methodology has some advantages over other standard approaches in the literature. We also give some experimental insight into the performance of our proposal compared to the original kernel-based approach \cite{Gretton2007} and the test based on energy distances \cite{Szekely-Rizzo-2017}.
翻译:我们使用一种合适的“内核戏法”来设计二类(共性)测试,特别侧重于高维和功能性数据。我们的提案涉及与选择适当的内核功能这一重要实际问题有关的简化。具体地说,我们采用了一个统一的内核戏法变式,它涉及内核距离等级的内核。我们获得了试验统计数据的无空间分布(在无效和替代假设下)。证据依赖经验性过程理论,结合德尔塔方法和哈达马尔德(直接)差异性技术,以及基础过程的功能性Karhunen-Lo ⁇ eve型扩展。这一方法比文献中的其他标准方法有一些优势。我们还对我们的建议书的绩效进行了一些实验性了解,与原先以内核为基础的方法\cite{Gretton2007}和基于能量距离的测试相比,我们的建议绩效也有一些实验性洞察。