This paper analyzes a popular loss function used in machine learning called the log-cosh loss function. A number of papers have been published using this loss function but, to date, no statistical analysis has been presented in the literature. In this paper, we present the distribution function from which the log-cosh loss arises. We compare it to a similar distribution, called the Cauchy distribution, and carry out various statistical procedures that characterize its properties. In particular, we examine its associated pdf, cdf, likelihood function and Fisher information. Side-by-side we consider the Cauchy and Cosh distributions as well as the MLE of the location parameter with asymptotic bias, asymptotic variance, and confidence intervals. We also provide a comparison of robust estimators from several other loss functions, including the Huber loss function and the rank dispersion function. Further, we examine the use of the log-cosh function for quantile regression. In particular, we identify a quantile distribution function from which a maximum likelihood estimator for quantile regression can be derived. Finally, we compare a quantile M-estimator based on log-cosh with robust monotonicity against another approach to quantile regression based on convolutional smoothing.
翻译:本文分析了机器学习中使用的流行损失函数, 称为log- cosh 损失函数。 使用此损失函数出版了一些论文, 但文献中至今没有提供统计分析 。 在本文中, 我们展示了日志损失的分布函数。 我们比较了它与类似分布的比较, 称为 Cauchy 分布, 并进行了各种统计程序, 其属性特征。 特别是, 我们检查它相关的 pdf、 cdf、 概率函数和 Fisher 信息。 侧侧边我们考虑Cauch 和 Cosh 分布以及位置参数的 MLE, 且有失色偏差、 损度差异和信任间隔。 我们还比较了其他几项损失函数的强度估计符, 包括Huber 损失函数和级别分散函数。 此外, 我们考察了对四分法函数的缩放函数的缩放函数 。 特别是, 我们找到了一个微缩放分布函数, 可以从中得出最小可能的 缩放回归估计值 。 最后, 我们比较了基于日志的平整平调的微调平整平整调平整平整调的微调平整方法 。