To study information processing in the brain, neuroscientists manipulate experimental stimuli while recording participant brain activity. They can then use encoding models to find out which brain "zone" (e.g. which region of interest, volume pixel or electrophysiology sensor) is predicted from the stimulus properties. Given the assumptions underlying this setup, when stimulus properties are predictive of the activity in a zone, these properties are understood to cause activity in that zone. In recent years, researchers have used neural networks to construct representations that capture the diverse properties of complex stimuli, such as natural language or natural images. Encoding models built using these high-dimensional representations are often able to significantly predict the activity in large swathes of cortex, suggesting that the activity in all these brain zones is caused by stimulus properties captured in the representation. It is then natural to ask: "Is the activity in these different brain zones caused by the stimulus properties in the same way?" In neuroscientific terms, this corresponds to asking if these different zones process the stimulus properties in the same way. Here, we propose a new framework that enables researchers to ask if the properties of a stimulus affect two brain zones in the same way. We use simulated data and two real fMRI datasets with complex naturalistic stimuli to show that our framework enables us to make such inferences. Our inferences are strikingly consistent between the two datasets, indicating that the proposed framework is a promising new tool for neuroscientists to understand how information is processed in the brain.
翻译:为了研究大脑的信息处理,神经科学家在记录参与者的大脑活动时操控实验刺激。 然后他们可以使用编码模型来找出从刺激特性中预测哪个大脑“区”(例如,哪个感兴趣的区域、体积像素或电生理感应器)是来自刺激特性的预测。 鉴于这一设置背后的假设,当刺激特性可以预测一个区域内的活动时,这些特性被理解为导致该区的活动。近年来,研究人员利用神经网络来构建显示复杂刺激特性的不同特性的演示,例如自然语言或自然图像。使用这些高维表示法建立的模型往往能够显著预测在大型神经皮层中的活动(例如,哪个区域、体积像素或电物理感应感应器) 。 这表明所有这些大脑区域的活动都是由这个代表法所捕捉的刺激特性造成的。 然后自然地问 : “ 刺激特性以同样的方式造成的这些不同的大脑区域的活动是? 从神经科学角度来说,这相当于询问这些不同的区域是否以同样的方式处理刺激特性。 在这里,我们建议一个新的框架是让研究人员能够 以两种不同的方式 模拟的大脑结构 显示真实的特性 。