The interplay between infinite-width neural networks (NNs) and classes of Gaussian processes (GPs) is well known since the seminal work of Neal (1996). While numerous theoretical refinements have been proposed in the recent years, the interplay between NNs and GPs relies on two critical distributional assumptions on the NN's parameters: A1) finite variance; A2) independent and identical distribution (iid). In this paper, we consider the problem of removing A1 in the general context of deep feed-forward convolutional NNs. In particular, we assume iid parameters distributed according to a stable distribution and we show that the infinite-channel limit of a deep feed-forward convolutional NNs, under suitable scaling, is a stochastic process with multivariate stable finite-dimensional distributions. Such a limiting distribution is then characterized through an explicit backward recursion for its parameters over the layers. Our contribution extends results of Favaro et al. (2020) to convolutional architectures, and it paves the way to expand exciting recent lines of research that rely on classes of GP limits.
翻译:自Neal(1996年)的开创性工作以来,无限宽线神经网络(NNS)和Gaussian进程类别(GPs)之间的相互作用是众所周知的。虽然近年来提出了许多理论上的改进建议,但NNS和GPs之间的相互作用取决于NN参数的两个关键分布假设:A1, 有限差异;A2, 独立和相同的分布(二d)。在本文件中,我们考虑了在深度进料向前的螺旋NPs总体背景下删除A1的问题。特别是,我们假设根据稳定分布分布的iid参数,我们表明在适当规模下,深线进料向前的NPs的无限通道限制是一个具有多变稳定有限维分布的随机过程。这种限制分布的特征是其参数在层次上的明显后向回溯。我们的贡献将Favaro等人(202020年)的结果延伸至革命型的架构,并铺平了扩大最近依赖GG限制类别的研究线的令人振奋人心的道路。