Synthetic polyp generation is a good alternative to overcome the privacy problem of medical data and the lack of various polyp samples. In this study, we propose a deep learning-based polyp image generation framework that generates synthetic polyp images that are similar to real ones. We suggest a framework that converts a given polyp image into a negative image (image without a polyp) using a simple conditional GAN architecture and then converts the negative image into a new-looking polyp image using the same network. In addition, by using the controllable polyp masks, polyps with various characteristics can be generated from one input condition. The generated polyp images can be used directly as training images for polyp detection and segmentation without additional labeling. To quantitatively assess the quality of generated synthetic polyps, we use public polyp image and video datasets combined with the generated synthetic images to examine the performance improvement of several detection and segmentation models. Experimental results show that we obtain performance gains when the generated polyp images are added to the training set.
翻译:合成聚虫生成是克服医疗数据隐私问题和缺乏各种聚虫样本的一个很好的替代方法。 在这项研究中,我们建议建立一个基于深层次学习的聚虫图像生成框架,生成与真实图像相似的合成聚虫图像。我们建议建立一个框架,利用一个简单的有条件的GAN结构将特定聚虫图像转换为负图像(无聚虫图像),然后利用同一个网络将负图像转换为新的外观聚虫图像。此外,通过使用可控聚虫面罩,从一个输入状态中生成具有不同特性的聚虫。生成的聚虫图像可以直接用作聚虫检测和分解的训练图像,而无需附加标签。为了从数量上评估生成的合成聚虫的图像的质量,我们使用公共聚虫图像和视频数据集结合合成图像,以检查若干检测和分化模型的性能改进。实验结果表明,当生成的聚虫像被添加到培训组时,我们获得了绩效增益。