We study the mixing time of a random walker who moves inside a dynamical random cluster model on the d-dimensional torus of side-length n. In this model, edges switch at rate \mu between open and closed, following a Glauber dynamics for the random cluster model with parameters p,q. At the same time, the walker jumps at rate 1 as a simple random walk on the torus, but is only allowed to traverse open edges. We show that for small enough p the mixing time of the random walker is of order n^2/\mu. In our proof we construct of a non-Markovian coupling through a multi-scale analysis of the environment, which we believe could be more widely applicable.
翻译:我们研究一个随机行尸的混合时间,该行尸在一个动态随机群集模型内移动到一维长 n 的长度横截面上。在这个模型中,边缘按开放和封闭的速率\mu 开关,遵循一个带参数 p,q 的随机群集模型的Glauber 动态。同时,行尸以1 速率跳跃,作为横线上的简单随机行走,但只允许绕过开阔边缘。我们显示,对于足够小的点来说,随机行尸的混合时间是n ⁇ 2/\\mu 的顺序。我们的证据是,我们通过对环境的多尺度分析构建了非马尔科文的组合,我们认为这种分析可以更加广泛适用。