A query game is a pair of a set $Q$ of queries and a set $\mathcal{F}$ of functions, or code words $f:Q\rightarrow\mathbb{Z}$. We think of this as a two-player game. One player, Codemaker, picks a hidden code word $f\in\mathcal{F}$. The other player, Codebreaker, then tries to determine $f$ by asking a sequence of queries $q\in Q$, after each of which Codemaker must respond with the value $f(q)$. The goal of Codebreaker is to achieve this using as few queries as possible. Two classical examples of such games are coin-weighing with a spring scale, and Mastermind, which are of interest both as recreational games and for their connection to information theory. In this paper, we will present a general framework for finding short solutions to query games. As applications, we give new self-contained proofs of the query complexity of variations of the coin-weighing problems, and prove new results that the deterministic query complexity of Mastermind is $\Theta(n \log k/ \log n + k)$ if only black-peg information is provided, and $\Theta(n \log k / \log n + k/n)$ if both black- and white-peg information is provided. In the deterministic setting, these are the first up to constant factor optimal solutions to Mastermind known for any $k\geq n^{1-o(1)}$.
翻译:查询游戏是一对一套 $Q 的查询和一套 $mathcal{F} 美元, 或一套 $f:\\\rightar\mathb}$。 我们将此视为双玩游戏。 一名玩家, 制解码器, 选择一个隐藏的代码单词$f\ in\ mathcal{F}$。 另一个玩家, 代码破解器, 然后试图通过询问顺序来确定 $q\ Q$ 来确定 $f$, 之后, 编码器必须用 $f( q) 来回答 。 代码破解器的目标是尽可能少地使用经常查询来实现这一目标 。 有两个这类游戏的经典例子是弹级比重硬币, 以及 Master kminal 和 kmind 的黑色调解算法是 $/ kmind。 我们将提供一个查找游戏短期解决方案的一般框架。 作为应用程序, 我们给硬币- 问题 的查询复杂性提供新的自足证据, 中, 如果 任何n- main main main kn kn\\ kminlog\ k\ kd 提供了这些 kmin\ kmin\ k\ kd 的n kmin\ kd int rig) 的n kd ex requimeal kd int kd int ex ex ex ex