Linear minimum mean square error (LMMSE) estimation is often ill-conditioned, suggesting that unconstrained minimization of the mean square error is an inadequate principle for filter design. To address this, we first develop a unifying framework for studying constrained LMMSE estimation problems. Using this framework, we expose an important structural property of constrained LMMSE filters: They generally involve an inherent preconditioning step. This parameterizes all such filters only by their preconditioners. Moreover, each filters is invariant to invertible linear transformations of its preconditioner. We then clarify that merely constraining the rank of the filter does not suitably address the problem of ill-conditioning. Instead, we adopt a constraint that explicitly requires solutions to be well-conditioned in a certain specific sense. We introduce two well-conditioned filters and show that they converge to the unconstrained LMMSE filter as their truncated-power loss goes to zero, at the same rate as the low-rank Wiener filter. We also show extensions to the case of weighted trace and determinant of the error covariance as objective functions. Finally, we show quantitative results with historical VIX data to demonstrate that our two well-conditioned filters have stable performance while the standard LMMSE filter deteriorates with increasing condition number.
翻译:最小线性平均平方错误( LMMSE) 估计往往条件不成熟, 表明不限制地尽量减少中值平方错误对于过滤器设计来说是不适当的原则。 为了解决这个问题, 我们首先为研究受限制的 LMMSE 估计问题制定一个统一框架。 使用这个框架, 我们暴露了受限制的 LMMSE 过滤器的重要结构属性: 它们通常包含一个内在的先决条件步骤。 这个参数将所有这些过滤器都仅仅以其先决条件性能损失归为零。 此外, 每个过滤器都无法让其先决条件性过滤器发生不可倒置的线性变换。 我们然后澄清, 仅仅限制过滤器的级别并不能适当解决不适的调节问题。 相反, 我们采取了明确要求解决方案在某种特定意义上得到良好条件的统一框架。 我们引入了两个有良好条件的过滤器, 显示它们与未受限制的 LMMSE 过滤器的功率损失达到零, 其速率与低级Winer过滤器过滤器相同。 我们还展示了加权追踪和误差误差判断性客观功能的例子。 最后, 我们展示了两个具有稳定性能级的过滤器, 同时我们展示了稳定的六级数据。