We propose a multiple-splitting projection test (MPT) for one-sample mean vectors in high-dimensional settings. The idea of projection test is to project high-dimensional samples to a 1-dimensional space using an optimal projection direction such that traditional tests can be carried out with projected samples. However, estimation of the optimal projection direction has not been systematically studied in the literature. In this work, we bridge the gap by proposing a consistent estimation via regularized quadratic optimization. To retain type I error rate, we adopt a data-splitting strategy when constructing test statistics. To mitigate the power loss due to data-splitting, we further propose a test via multiple splits to enhance the testing power. We show that the $p$-values resulted from multiple splits are exchangeable. Unlike existing methods which tend to conservatively combine dependent $p$-values, we develop an exact level $\alpha$ test that explicitly utilizes the exchangeability structure to achieve better power. Numerical studies show that the proposed test well retains the type I error rate and is more powerful than state-of-the-art tests.
翻译:我们建议对高维环境中的一模平均矢量进行多分投试验(MPT)。投射试验的构想是使用最佳的投影方向将高维样品投射到一维空间,以便用预测样品进行传统试验。然而,对最佳预测方向的估计没有在文献中进行系统研究。在这项工作中,我们通过正规化的二次优化提出一致的估计来弥合差距。为了保留第一类误差率,我们在构建测试统计数据时采用了数据分割战略。为了减少数据分割造成的功率损失,我们进一步提议通过多分法进行试验,以加强测试能力。我们表明,多分法产生的美元值是可以互换的。与目前倾向于保守地将依赖的美元值结合起来的方法不同,我们开发了精确的1美元/alpha美元测试,明确利用互换性结构获得更好的功率。Numerical研究显示,拟议的试验井保留了I型误率,并且比状态测试更强大。