Existing deep convolutional neural network (CNN) architectures frequently rely upon batch normalization (BatchNorm) to effectively train the model. BatchNorm significantly improves model performance, but performs poorly with smaller batch sizes. To address this limitation, we propose kernel normalization and kernel normalized convolutional layers, and incorporate them into kernel normalized convolutional networks (KNConvNets) as the main building blocks. We implement KNConvNets corresponding to the state-of-the-art CNNs such as ResNet and DenseNet while forgoing BatchNorm layers. Through extensive experiments, we illustrate that KNConvNets consistently outperform their batch, group, and layer normalized counterparts in terms of both accuracy and convergence rate while maintaining competitive computational efficiency.
翻译:现有的深层革命神经网络(CNN)结构经常依赖批量正常化(批量诺姆)来有效培训模型。批量诺姆极大地改进了模型性能,但与较小的批量大小相比表现不佳。为了应对这一限制,我们提议将内核正常化和内核标准化的进化层纳入核心革命网络(KNConvNets),作为主要构件。我们实施了与最先进的CNN(如ResNet和DenseNet)相对应的KNConvNet,同时放弃批量Norm层。我们通过广泛的实验表明,KNConvNet在保持竞争性计算效率的同时,在准确性和趋同率方面始终超过其组、组和层的对等。