Multi-modal and multi-hop question answering aims to answer a question based on multiple input sources from different modalities. Previous methods retrieve the evidence separately and feed the retrieved evidence to a language model to generate the corresponding answer. However, these methods fail to build connections between candidates and thus cannot model the inter-dependent relation during retrieval. Moreover, the reasoning process over multi-modality candidates can be unbalanced without building alignments between different modalities. To address this limitation, we propose a Structured Knowledge and Unified Retrieval Generation based method (SKURG). We align the sources from different modalities via the shared entities and map them into a shared semantic space via structured knowledge. Then, we utilize a unified retrieval-generation decoder to integrate intermediate retrieval results for answer generation and adaptively determine the number of retrieval steps. We perform experiments on two multi-modal and multi-hop datasets: WebQA and MultimodalQA. The results demonstrate that SKURG achieves state-of-the-art performance on both retrieval and answer generation.


翻译:多式和多式问题解答旨在解答基于不同模式的多种输入源的问题。 先前的方法是将证据分开,并将检索的证据输入语言模型,以得出相应的答案。 但是,这些方法未能在候选人之间建立联系,因此无法在检索过程中模拟独立关系。 此外,多式候选人的推理过程可能不平衡,而没有在不同模式之间建立联系。 为解决这一限制,我们提议了一个基于结构化知识和统一检索生成方法(SKURG) 。 我们通过共享实体将不同模式的来源通过共享实体进行对齐,并通过结构化知识将其映射成一个共同的语义空间。 然后,我们使用统一的检索生成解码器整合中间检索结果,以便生成答案,并适应性地决定检索步骤的数量。 我们在两个多式和多式数据集上进行了实验: WebQA 和 Multi-hopalQA。 结果显示, SKURG在检索和回答生成两方面都取得了最先进的业绩。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
18+阅读 · 2020年10月9日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
会议交流 | IJCKG: International Joint Conference on Knowledge Graphs
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员