We establish in this work approximation results of deep neural networks for smooth functions measured in Sobolev norms, motivated by recent development of numerical solvers for partial differential equations using deep neural networks. {Our approximation results are nonasymptotic in the sense that the error bounds are explicitly characterized in terms of both the width and depth of the networks simultaneously with all involved constants explicitly determined.} Namely, for $f\in C^s([0,1]^d)$, we show that deep ReLU networks of width $\mathcal{O}(N\log{N})$ and of depth $\mathcal{O}(L\log{L})$ can achieve a nonasymptotic approximation rate of $\mathcal{O}(N^{-2(s-1)/d}L^{-2(s-1)/d})$ with respect to the $\mathcal{W}^{1,p}([0,1]^d)$ norm for $p\in[1,\infty)$. If either the ReLU function or its square is applied as activation functions to construct deep neural networks of width $\mathcal{O}(N\log{N})$ and of depth $\mathcal{O}(L\log{L})$ to approximate $f\in C^s([0,1]^d)$, the approximation rate is $\mathcal{O}(N^{-2(s-n)/d}L^{-2(s-n)/d})$ with respect to the $\mathcal{W}^{n,p}([0,1]^d)$ norm for $p\in[1,\infty)$.


翻译:我们在此建立深神经网络的近似值结果, 用于在 Sobolev 规范中测量的平滑功能, 其动机是最近为使用深神经网络的部分差异方程式开发的数字解析器 。 { 我们的近似值是非亚光度, 其含义是: 以所有所涉的常量同时确定 。}, 也就是说, $\ in C} ([ 0, 1} { { d) 美元, 我们显示, $\ mathal{ O} (N\log{ N} 美元和深度 $\ macal_ cal} 和 $\ mal_ 美元[L\\\\ c} 的不亚光度, $( 1, 1) f_d} 美元( 1, f} 美元( n) 美元( n) (n) 美元( n) 和 美元( n_ 美元) 美元( n=} 美元( L} (L_\\\\\ 美元) 美元( 美元) 内内部运行RUL_ 的功能, 美元( 美元( 美元) 美元( 美元) 美元/ 美元( 至内 内 内 内 内 内( 内( 内) 内( 内( 内) 底) 内( 内) 内) 内( 内) 内( 内( 内( 内( 内) 内) 内( 内) 内) 内) 内( 内( 内) 内) 内( 内( 内( 内( 内) 内) 内( 内) 内( 内( 内( ) 内( 内) 内) 内) 内) 内) 内( 内( 内) 内) 内) 内) 内) 内) 内) 内) 内( 内( 内( 内( 内( 内( 内) 内(内(内) 内) 内) 内) 内) 内) 内) 内(内) 内) 内( 内( 内(内(

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月18日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员