We show that the topes of a complex of oriented matroids (abbreviated COM) of VC-dimension $d$ admit a proper labeled sample compression scheme of size $d$. This considerably extends results of Moran and Warmuth on ample classes, of Ben-David and Litman on affine arrangements of hyperplanes, and of the authors on complexes of uniform oriented matroids, and is a step towards the sample compression conjecture -- one of the oldest open problems in computational learning theory. On the one hand, our approach exploits the rich combinatorial cell structure of COMs via oriented matroid theory. On the other hand, viewing tope graphs of COMs as partial cubes creates a fruitful link to metric graph theory.
翻译:我们展示了复合有向拟阵(缩写为COM)的拓普兹,VC维数为$d$,具有大小为$d$的适当标记样本压缩方案。这个结果极大地扩展了Moran和Warmuth对丰富类的结果,Ben-David和Litman对超平面的仿射排列的结果以及作者对统一有向拟阵的复合的结果,它是迈向样本压缩猜想的一步。这是计算学习理论中最古老的开放性问题之一。一方面,我们的方法通过有向拟阵理论利用COM的丰富组合细胞结构。另一方面,将COM的拓普兹图视为偏导图,就创造了与度量图理论的有益联系。