In this article, we describe and propose methods to derive \textit{p}-values and sets of confidence intervals with strong control of the family-wise error rates and coverage for tests of parameters from multiple generalised linear mixed models. We examine in particular analysis of a cluster randomised trial with multiple outcomes. While the need for corrections for multiple testing is debated, the justification for doing so is that, without correction, the probability of rejecting at least one of a set of null hypotheses is greater than the nominal rate of any single test, and hence the coverage of a confidence set is lower than the nominal rate of any single interval. There are few methods \textit{p}-value corrections for GLMMs and no efficient methods for deriving confidence intervals, limiting their application in this setting. We adapt the Bonferroni and Holm methods, and the randomisation-test approach of Romano \& Wolf (2005) to a generalised linear model framework. A search procedure for confidence interval limits using randomisation tests is developed to produce a set of confidence intervals under each method of correction. We show that the Romano-Wolf type procedure has nominal error rates and coverage under non-independent correlation structures in a simulation-based study, but the other methods only have nominal rates when outcomes are independent. We also compare results from the analysis of a real-world trial.
翻译:在本篇文章中,我们描述和提出产生\textit{p}值和信任间隔的方法,对家庭错误率和多个通用线性混合模型参数的测试范围进行严格控制。我们特别研究对一组随机试验的多重结果分析。虽然对多项试验进行修正的必要性进行了辩论,但这样做的理由是,不更正至少拒绝一套无效假设之一的可能性大于任何单一试验的名义比率,因此,一套信任的覆盖范围低于任何单一间隔的标定比率。对于GLMMs,几乎没有什么方法\textit{p}值校正,也没有有效的方法来得出信任间隔,从而限制在这种环境下的应用。我们调整Bonferroni和Holm方法,以及Romano ⁇ Wolf (2005年)的随机测试方法,使之符合一个普遍的线性示范框架。使用随机测试的保密间隔限制搜索程序,以便在每种校正方法下产生一套信任间隔。我们显示,GLMMMs(G-Wolf)的值校正校正校准值校准率结构中,我们只能根据真实的模型进行一个独立的比较性分析,在不以实际试验结果下,我们只是以名义为基础的模拟的比比标准。