Following the research agenda initiated by Munoz & Vassilvitskii [1] and Lykouris & Vassilvitskii [2] on learning-augmented online algorithms for classical online optimization problems, in this work, we consider the Online Facility Location problem under this framework. In Online Facility Location (OFL), demands arrive one-by-one in a metric space and must be (irrevocably) assigned to an open facility upon arrival, without any knowledge about future demands. We present an online algorithm for OFL that exploits potentially imperfect predictions on the locations of the optimal facilities. We prove that the competitive ratio decreases smoothly from sublogarithmic in the number of demands to constant, as the error, i.e., the total distance of the predicted locations to the optimal facility locations, decreases towards zero. We complement our analysis with a matching lower bound establishing that the dependence of the algorithm's competitive ratio on the error is optimal, up to constant factors. Finally, we evaluate our algorithm on real world data and compare our learning augmented approach with the current best online algorithm for the problem.
翻译:根据Munoz & Vassilvitskii [1] 和 Lykouris & Vassilvitskii [2] 提出的研究议程,在这项工作中,我们考虑了这一框架下的在线设施位置问题。在在线设施定位(OFL)中,要求一一抵达一个计量空间,并且必须在到达时(不可撤销地)被分配到一个开放设施,对未来的需求没有任何了解。我们为OFL提出了一个在线算法,利用了最佳设施地点可能不完善的预测。我们证明,竞争比率从需求数量的亚对数平稳下降,作为错误,即预测地点与最佳设施地点的总距离降至零。我们用一个较低的比对的比值来补充我们的分析,确定该算法对错误的竞争性比率是最佳的,直到不断的因素。最后,我们评估了我们关于真实世界数据的算法,并将我们学习的增强方法与目前最好的问题在线算法相比较。