For many real-world decision-making problems subject to uncertainty, it may be essential to deal with multiple and often conflicting objectives while taking the decision-makers' risk preferences into account. Conditional value-at-risk (CVaR) is a widely applied risk measure to address risk-averseness of the decision-makers. In this paper, we use the subset-based polyhedral representation of the CVaR to reformulate the bi-objective two-stage stochastic facility location problem presented in Nazemi et al. (2021). We propose an approximate cutting-plane method to deal with this more computationally challenging subset-based formulation. Then, the cutting plane method is embedded into the epsilon-constraint method, the balanced-box method, and a recently developed matheuristic method to address the bi-objective nature of the problem. Our computational results show the effectiveness of the proposed method. Finally, we discuss how incorporating an approximation of the subset-based polyhedral formulation affects the obtained solutions.


翻译:对于面临不确定性的许多现实世界决策问题,在考虑决策者的风险偏好时,必须处理许多往往相互矛盾的多重目标。有条件值风险(CVaR)是广泛应用的风险评估措施,旨在解决决策者对风险的厌恶。在本文中,我们使用基于子集的CVaR多元代表制重塑Nazemi等人(2021年)提出的双目标两阶段随机设施定位问题。我们提议了一种大致的切割机方法,以应对这一更具计算难度的子集成配方。然后,切割机方法嵌入了易碎石-分层法、平衡箱法和最近开发的一种数学方法,以解决问题的双目标性质。我们的计算结果显示了拟议方法的有效性。最后,我们讨论了如何将子集成的组合组合组合组合组合组合组合组合组合组合组合的近似近影响获得的解决办法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员