Object detection and data association are critical components in multi-object tracking (MOT) systems. Despite the fact that the two components are dependent on each other, prior works often design detection and data association modules separately which are trained with separate objectives. As a result, one cannot back-propagate the gradients and optimize the entire MOT system, which leads to sub-optimal performance. To address this issue, recent works simultaneously optimize detection and data association modules under a joint MOT framework, which has shown improved performance in both modules. In this work, we propose a new instance of joint MOT approach based on Graph Neural Networks (GNNs). The key idea is that GNNs can model relations between variable-sized objects in both the spatial and temporal domains, which is essential for learning discriminative features for detection and data association. Through extensive experiments on the MOT15/16/17/20 datasets, we demonstrate the effectiveness of our GNN-based joint MOT approach and show state-of-the-art performance for both detection and MOT tasks. Our code is available at: https://github.com/yongxinw/GSDT


翻译:目标探测和数据关联是多物体跟踪(MOT)系统中的关键组成部分。尽管这两个组成部分相互依赖,但先前的工作往往分别设计探测和数据关联模块,这些模块经过不同的目标培训。因此,无法反向推广梯度和优化整个MOT系统,从而产生亚最佳性能。为解决这一问题,最近的工作同时优化了在MOT联合框架下的探测和数据关联模块,这显示两个模块的性能都有所改进。在这项工作中,我们提议了一个新的以图形神经网络(GNN)为基础的联合MOT方法实例。关键的想法是,GNN可以模拟空间和时间范围内不同大小物体之间的关系,这对于学习检测和数据关联的歧视性特征至关重要。通过对MOT15/16/17/20数据集的广泛实验,我们展示了基于GNN的联合MOT方法的有效性,并展示了探测和MOT任务的状态。我们的代码可以在https://github.com/yongxinw/GSDTT上查到。

0
下载
关闭预览

相关内容

《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
3+阅读 · 2018年6月14日
Arxiv
8+阅读 · 2018年3月20日
VIP会员
相关VIP内容
《行为与认知机器人学》,241页pdf
专知会员服务
53+阅读 · 2021年4月11日
【清华大学】图随机神经网络,Graph Random Neural Networks
专知会员服务
155+阅读 · 2020年5月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
Graph Neural Networks 综述
计算机视觉life
29+阅读 · 2019年8月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Fully-Convolutional Siamese Networks for Object Tracking论文笔记
统计学习与视觉计算组
9+阅读 · 2018年10月12日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Relation Networks for Object Detection 论文笔记
统计学习与视觉计算组
16+阅读 · 2018年4月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员