The challenge of the cloud removal task can be alleviated with the aid of Synthetic Aperture Radar (SAR) images that can penetrate cloud cover. However, the large domain gap between optical and SAR images as well as the severe speckle noise of SAR images may cause significant interference in SAR-based cloud removal, resulting in performance degeneration. In this paper, we propose a novel global-local fusion based cloud removal (GLF-CR) algorithm to leverage the complementary information embedded in SAR images. Exploiting the power of SAR information to promote cloud removal entails two aspects. The first, global fusion, guides the relationship among all local optical windows to maintain the structure of the recovered region consistent with the remaining cloud-free regions. The second, local fusion, transfers complementary information embedded in the SAR image that corresponds to cloudy areas to generate reliable texture details of the missing regions, and uses dynamic filtering to alleviate the performance degradation caused by speckle noise. Extensive evaluation demonstrates that the proposed algorithm can yield high quality cloud-free images and outperform state-of-the-art cloud removal algorithms with a gain about 1.7dB in terms of PSNR on SEN12MS-CR dataset.
翻译:利用合成孔径雷达(合成孔径雷达)能够渗透云层覆盖的图像,可以缓解云清除任务的挑战。然而,光学和合成孔径雷达图像之间的巨大域间差距以及合成孔径雷达图像的强烈闪烁噪音可能会对以合成孔径雷达为基础的云清除工作造成重大干扰,从而导致性能退化。在本文中,我们提出一个新的基于全球-局部云清除(GLF-CR)算法,以利用合成孔径雷达图像中所含的补充信息。利用合成孔径雷达信息促进云清除工作的力量涉及两个方面。首先,全球融合,指导所有本地光学窗口之间的关系,以保持回收区域的结构与余下的无云区域保持一致。第二,局部融合,传输合成孔径雷达图像中所含的补充信息,以生成缺失区域的可靠的纹理细节,并使用动态过滤器来缓解光纤噪音造成的性性能退化。广泛的评估表明,拟议的算法可以产生高质量的无云图像和超形的状态云清除云算,在SNSR12数据中获取大约1.7dB。