Cloud removal is an essential task in remote sensing data analysis. As the image sensors are distant from the earth ground, it is likely that part of the area of interests is covered by cloud. Moreover, the atmosphere in between creates a constant haze layer upon the acquired images. To recover the ground image, we propose to use scattering model for temporal sequence of images of any scene in the framework of low rank and sparse models. We further develop its variant, which is much faster and yet more accurate. To measure the performance of different methods {\em objectively}, we develop a semi-realistic simulation method to produce cloud cover so that various methods can be quantitatively analysed, which enables detailed study of many aspects of cloud removal algorithms, including verifying the effectiveness of proposed models in comparison with the state-of-the-arts, including deep learning models, and addressing the long standing problem of the determination of regularisation parameters. The latter is companioned with theoretic analysis on the range of the sparsity regularisation parameter and verified numerically.
翻译:清除云是遥感数据分析的一项基本任务。 由于图像传感器距离地面很远, 部分利益区域很可能由云覆盖。 此外, 大气之间在获得的图像上形成一个恒定的烟雾层。 为了恢复地面图像, 我们提议在低级和稀疏模型框架内使用散射模型作为任何场景图像的时间序列模型。 我们进一步开发其变种, 该变种速度更快,更准确。 由于测量不同方法的性能, 我们开发了一个半现实的模拟方法, 生成云层覆盖, 从而可以对各种方法进行定量分析, 从而能够详细研究云清除算法的许多方面, 包括核查拟议模型与最新图样相比的有效性, 包括深度学习模型, 并解决确定常规化参数的长期问题。 后者与关于宽度常规化参数范围的理论分析相伴有, 并经过数字验证。