Machine learning based traffic forecasting models leverage sophisticated spatiotemporal auto-correlations to provide accurate predictions of city-wide traffic states. However, existing methods assume a reliable and unbiased forecasting environment, which is not always available in the wild. In this work, we investigate the vulnerability of spatiotemporal traffic forecasting models and propose a practical adversarial spatiotemporal attack framework. Specifically, instead of simultaneously attacking all geo-distributed data sources, an iterative gradient-guided node saliency method is proposed to identify the time-dependent set of victim nodes. Furthermore, we devise a spatiotemporal gradient descent based scheme to generate real-valued adversarial traffic states under a perturbation constraint. Meanwhile, we theoretically demonstrate the worst performance bound of adversarial traffic forecasting attacks. Extensive experiments on two real-world datasets show that the proposed two-step framework achieves up to $67.8\%$ performance degradation on various advanced spatiotemporal forecasting models. Remarkably, we also show that adversarial training with our proposed attacks can significantly improve the robustness of spatiotemporal traffic forecasting models. Our code is available in \url{https://github.com/luckyfan-cs/ASTFA}.
翻译:以机器学习为基础的交通预测模型利用复杂的时空自动关系来准确预测整个城市的交通状况。然而,现有方法假定一种可靠和不偏不倚的预测环境,而这种环境并非在野外总能找到。在这项工作中,我们调查时空交通预测模型的脆弱性,并提议一个实用的对抗性流动预测框架。具体地说,建议采用一种迭代梯度-引导式节点的迭代方法,而不是同时攻击所有地理分布式数据源,以便确定取决于时间的受害人节点。此外,我们还设计了一个基于时空梯度-梯度-下游计划,以产生真实而有价值的对抗性对立性交通状态。与此同时,我们理论上展示了对抗性交通预测攻击的最差的性能。两个现实世界数据集的广泛实验表明,提议的两步制框架在各种先进的波段-时空预测模型上达到67.8 $的性能退化。值得注意的是,我们还表明,与我们拟议的攻击进行对抗性培训可以大大改进对口型交通预测模型的稳健性。我们的代码可在http://Angurforfas/fastfas。