The gradient flow (GF) is an ODE for which its explicit Euler's discretization is the gradient descent method. In this work, we investigate a family of methods derived from \emph{approximate implicit discretizations} of (\GF), drawing the connection between larger stability regions and less sensitive hyperparameter tuning. We focus on the implicit $\tau$-step backwards differentiation formulas (BDFs), approximated in an inner loop with a few iterations of vanilla gradient descent, and give their convergence rate when the objective function is convex, strongly convex, or nonconvex. Numerical experiments show the wide range of effects of these different methods on extremely poorly conditioned problems, especially those brought about in training deep neural networks.


翻译:梯度流( GF) 是一个极分化模式, 其明显的 Euler 的离散性是梯度下降法。 在这项工作中, 我们调查了一组由(\GF) 的\ emph{ 近似隐含离散化法产生的方法, 将较大的稳定区和不太敏感的超参数调联系起来。 我们侧重于隐含的 $\tau$ 的向后偏移公式( BDFs ), 与香草梯度下降的几层相近, 当目标函数是二次曲线、 强烈的二次曲线或非二次曲线时, 我们给出它们的趋同率。 数字实验显示这些不同方法在条件极差的问题上产生的广泛影响, 尤其是那些在训练深层神经网络过程中产生的问题。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月30日
Arxiv
24+阅读 · 2022年2月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员