Given the increasingly intricate forms of partial differential equations (PDEs) in physics and related fields, computationally solving PDEs without analytic solutions inevitably suffers from the trade-off between accuracy and efficiency. Recent advances in neural operators, a kind of mesh-independent neural-network-based PDE solvers, have suggested the dawn of overcoming this challenge. In this emerging direction, Koopman neural operator (KNO) is a representative demonstration and outperforms other state-of-the-art alternatives in terms of accuracy and efficiency. Here we present KoopmanLab, a self-contained and user-friendly PyTorch module of the Koopman neural operator family for solving partial differential equations. Beyond the original version of KNO, we develop multiple new variants of KNO based on different neural network architectures to improve the general applicability of our module. These variants are validated by mesh-independent and long-term prediction experiments implemented on representative PDEs (e.g., the Navier-Stokes equation and the Bateman-Burgers equation) and ERA5 (i.e., one of the largest high-resolution data sets of global-scale climate fields). These demonstrations suggest the potential of KoopmanLab to be considered in diverse applications of partial differential equations.
翻译:鉴于物理学和相关领域的部分差异方程式(PDEs)形式日益复杂,在没有分析解决方案的情况下计算解决PDEs必然会因精确度和效率之间的权衡而受到影响。神经操作器(一种以网状独立神经网络为基础的PDE网络解答器)最近的进展表明,可以克服这一挑战。在这个新出现的方向上,Koopman神经操作器(KNO)是一个具有代表性的演示,在准确性和效率方面优于其他最先进的替代方程式。这里我们介绍Koopman神经操作器大家庭中一个自足和用户友好的PyTorrch模块,用于解决部分差异方程式。除了KNO的原始版本外,我们还根据不同的神经网络结构开发了多种新的KNO变体,以提高我们模块的一般适用性。这些变体得到在具有代表性的PDEs(例如,Navier-Stoks方程式和Bateman-Burchers等式模型)上实施的具有代表性的长期预测实验的验证。这些变体(例如,Cavier-Stokes 和Gate-Beman-Brechman comman comman 等式模型中,在高尺度的模型中被考虑的GRA5 等式模型中,这些变式模型中,这些变式模型中,这些变形为具有最大的部分的模型。