We develop a multigrid solver for the second biharmonic problem in the context of Isogeometric Analysis (IgA), where we also allow a zero-order term. In a previous paper, the authors have developed an analysis for the first biharmonic problem based on Hackbusch's framework. This analysis can only be extended to the second biharmonic problem if one assumes uniform grids. In this paper, we prove a multigrid convergence estimate using Bramble's framework for multigrid analysis without regularity assumptions. We show that the bound for the convergence rate is independent of the scaling of the zero-order term and the spline degree. It only depends linearly on the number of levels, thus logarithmically on the grid size. Numerical experiments are provided which illustrate the convergence theory and the efficiency of the proposed multigrid approaches.
翻译:在Isogophialogy 分析(IgA)中,我们为第二个双声道问题开发了一个多格化求解器,我们也允许采用零级术语。在前一份文件中,作者根据Hackbusch的框架,对第一个双声道问题进行了分析。这种分析只有在假设统一的电网时才能扩大到第二个双声道问题。在本文中,我们证明使用Bramble的多格化分析框架来进行多格化趋同估计,而没有定期假设。我们表明,趋同率的界限独立于零阶词和浮点度的缩放。它仅取决于水平的线性数量,因此在电网大小上是逻辑的。提供了数字实验,以说明拟议的多格化方法的趋同理论和效率。