We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\widetilde{O}(m^2/\phi)$ and finds an $\widetilde{O}(\phi)$-sparse balanced cut, when the given graph has a $\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\phi$-sparse balanced cuts in $m^{1+o(1)}/\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).


翻译:我们提出了一个非常简单和直观的算法, 以通过最短路径在图表中找到平衡的稀释。 我们的算法结合了一个新的多复制性加权框架, 以解决单位重量多通性流动。 我们的算法将新的多复制性加权框架与标准球增殖参数结合起来。 使用Dijksstra的算法, 计算最短路径, 每一次每次重新计算最短路径的算法, 都会带来一个非常简单的算法, 在一个时间里运行 $m ⁇ ( o) {O} (m ⁇ 2/\\\\\\ phi), 并且找到一个 $\\\ +1} (\\\\\\\\\ ph) /\\ fi\ 时间。 当给定型的算法在给定型和确定性平衡的切换时, 我们的几乎线时间算法在随机和确定性的数据结构中匹配。 将我们的算法与已知的确定性数据结构结合起来, 回答所有最短路径( APSP) 的计算,, 在边端点的轨道上, 最简单的分析, 最简单的,, 也就是分析, 也就是 也就是分析, 最简单的, 直到 和 最简单的 直截式的,, 比较于亚的, 直截系的,, 比较于精确的 的, 直序的 的 的 的, 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年10月22日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员