We present a very simple and intuitive algorithm to find balanced sparse cuts in a graph via shortest-paths. Our algorithm combines a new multiplicative-weights framework for solving unit-weight multi-commodity flows with standard ball growing arguments. Using Dijkstra's algorithm for computing the shortest paths afresh every time gives a very simple algorithm that runs in time $\widetilde{O}(m^2/\phi)$ and finds an $\widetilde{O}(\phi)$-sparse balanced cut, when the given graph has a $\phi$-sparse balanced cut. Combining our algorithm with known deterministic data-structures for answering approximate All Pairs Shortest Paths (APSP) queries under increasing edge weights (decremental setting), we obtain a simple deterministic algorithm that finds $m^{o(1)}\phi$-sparse balanced cuts in $m^{1+o(1)}/\phi$ time. Our deterministic almost-linear time algorithm matches the state-of-the-art in randomized and deterministic settings up to subpolynomial factors, while being significantly simpler to understand and analyze, especially compared to the only almost-linear time deterministic algorithm, a recent breakthrough by Chuzhoy-Gao-Li-Nanongkai-Peng-Saranurak (FOCS 2020).
翻译:我们提出了一个非常简单和直观的算法, 以通过最短路径在图表中找到平衡的稀释。 我们的算法结合了一个新的多复制性加权框架, 以解决单位重量多通性流动。 我们的算法将新的多复制性加权框架与标准球增殖参数结合起来。 使用Dijksstra的算法, 计算最短路径, 每一次每次重新计算最短路径的算法, 都会带来一个非常简单的算法, 在一个时间里运行 $m ⁇ ( o) {O} (m ⁇ 2/\\\\\\ phi), 并且找到一个 $\\\ +1} (\\\\\\\\\ ph) /\\ fi\ 时间。 当给定型的算法在给定型和确定性平衡的切换时, 我们的几乎线时间算法在随机和确定性的数据结构中匹配。 将我们的算法与已知的确定性数据结构结合起来, 回答所有最短路径( APSP) 的计算,, 在边端点的轨道上, 最简单的分析, 最简单的,, 也就是分析, 也就是 也就是分析, 最简单的, 直到 和 最简单的 直截式的,, 比较于亚的, 直截系的,, 比较于精确的 的, 直序的 的 的 的, 。