We develop a general method to study the Fisher information distance in central limit theorem for nonlinear statistics. We first construct completely new representations for the score function. We then use these representations to derive quantitative estimates for the Fisher information distance. To illustrate the applicability of our approach, explicit rates of Fisher information convergence for quadratic forms and the functions of sample means are provided. For the sums of independent random variables, we obtain the Fisher information bounds without requiring the finiteness of Poincar\'e constant. Our method can also be used to bound the Fisher information distance in non-central limit theorems.
翻译:我们为非线性统计开发了一种研究渔业信息在中央限值理论中的距离的一般方法。 我们首先为得分函数构建全新的表达方式。 然后我们用这些表达方式来得出渔业信息距离的量化估计。 为了说明我们的方法是否适用,我们为二次形式和抽样手段的功能提供了明确的渔业信息趋同率。 对于独立的随机变量的总和,我们获取渔业信息界限时不要求Poincar/e恒定值的有限性。我们的方法也可以用来将渔业信息距离限制在非中央界限的理论中。