In this paper we discuss an application of Stochastic Approximation to statistical estimation of high-dimensional sparse parameters. The proposed solution reduces to resolving a penalized stochastic optimization problem on each stage of a multistage algorithm; each problem being solved to a prescribed accuracy by the non-Euclidean Composite Stochastic Mirror Descent (CSMD) algorithm. Assuming that the problem objective is smooth and quadratically minorated and stochastic perturbations are sub-Gaussian, our analysis prescribes the method parameters which ensure fast convergence of the estimation error (the radius of a confidence ball of a given norm around the approximate solution). This convergence is linear during the first "preliminary" phase of the routine and is sublinear during the second "asymptotic" phase. We consider an application of the proposed approach to sparse Generalized Linear Regression problem. In this setting, we show that the proposed algorithm attains the optimal convergence of the estimation error under weak assumptions on the regressor distribution. We also present a numerical study illustrating the performance of the algorithm on high-dimensional simulation data.
翻译:在本文中,我们讨论对高维稀有参数的统计估计应用Stochatic Appronic Appronication 。 拟议的解决方案减少了解决多阶段算法每个阶段中受惩罚的随机优化问题; 每一个问题都以非欧洲合成合成蒸馏镜底(CSMD)算法(CSMD)的指定准确性来解决。 假设问题的目标是平滑的, 微小的和随机的扰动, 我们的分析规定了确保估算错误快速趋同的方法参数( 一个特定规范围绕近似解法的置信球的半径 ) 。 这种趋同在常规的第一个“ 初步” 阶段是线性, 在第二个“ 亚线性” 阶段是亚线性 。 我们考虑对稀释一般线性递减问题采用拟议方法。 在此情况下, 我们显示, 拟议的算法在累增分布假设的薄弱假设下, 实现了估算错误的最佳趋同。 我们还提出一个数字研究, 说明高维模拟数据的表现。