In the adversarially robust streaming model, a stream of elements is presented to an algorithm and is allowed to depend on the output of the algorithm at earlier times during the stream. In the classic insertion-only model of data streams, Ben-Eliezer et. al. (PODS 2020, best paper award) show how to convert a non-robust algorithm into a robust one with a roughly $1/\varepsilon$ factor overhead. This was subsequently improved to a $1/\sqrt{\varepsilon}$ factor overhead by Hassidim et. al. (NeurIPS 2020, oral presentation), suppressing logarithmic factors. For general functions the latter is known to be best-possible, by a result of Kaplan et. al. (CRYPTO 2021). We show how to bypass this impossibility result by developing data stream algorithms for a large class of streaming problems, with no overhead in the approximation factor. Our class of streaming problems includes the most well-studied problems such as the $L_2$-heavy hitters problem, $F_p$-moment estimation, as well as empirical entropy estimation. We substantially improve upon all prior work on these problems, giving the first optimal dependence on the approximation factor. As in previous work, we obtain a general transformation that applies to any non-robust streaming algorithm and depends on the so-called twist number. However, the key technical innovation is that we apply the transformation to what we call a difference estimator for the streaming problem, rather than an estimator for the streaming problem itself. We then develop the first difference estimators for a wide range of problems. Our difference estimator methodology is not only applicable to the adversarially robust model, but to other streaming models where temporal properties of the data play a central role. (Abstract shortened to meet arXiv limit.)


翻译:在对抗性强的流模式中, 将元素流向一个算法, 并允许在流中早期取决于算法输出。 在典型的单插入式数据流模型中, Ben- Eliezer et al. (PODS 2020, 最佳纸质授标) 显示如何将非紫色算法转换成一个坚固的算法, 大约为 $/\\ varepsilon 系数管理。 这后来改进为 $/\ qrt lvarepsilon} 。 Hassidimim 等人( NeurIPS 2020, 口述演示), 压制对对对对正对流因素的输出。 我们的变换变, 最深的调问题包括 $_ 2 hitter 的调序, $_ premodal 流的调序是已知最佳的, 也就是我们之前的变序的变序, 我们的变序的变序的变序, 也就是我们之前的变序的变序的变序的变序, 我们的变序的变序的变序的变序的变序的变序的变序的变序, 的变序的变序的变序, 也就是的变序的变序的变序的变序的变序的变序的变算算算算算算法, 的变的变的变的变的变的变的变的变的变的变法, 的变法, 的变的变的变的变的变法, 的变的变的变的变的变法, 的变的变的变的变的变的变的变法, 的变的变的变的变的变的变的变的变法的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变法的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的变的

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年12月4日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员