In an inverse game problem, one needs to infer the cost function of the players in a game such that a desired joint strategy is a Nash equilibrium. We study the inverse game problem for a class of multiplayer games, where the players' cost functions are characterized by a matrix. We guarantee that the desired joint strategy is the unique Nash equilibrium of the game with the inferred cost matrix. We develop efficient optimization algorithms for inferring the cost matrix based on semidefinite programs and bilevel optimization. We demonstrate the application of these methods using examples where we infer the cost matrices that encourages noncooperative players to achieve collision avoidance in path-planning and fairness in resource allocation.
翻译:在反向的游戏问题中,人们需要推断游戏中玩家的成本功能,这样,一个理想的联合战略就是纳什平衡。我们研究一组多玩家游戏的反向游戏问题,玩家的成本功能以矩阵为特征。我们保证,理想的联合战略是游戏中独特的纳什平衡,与推断成本矩阵一起。我们开发高效优化算法,根据半无限期程序和双级优化来推断成本矩阵。我们用我们推断成本矩阵的例子来证明这些方法的应用,这些成本矩阵鼓励不合作的玩家在规划道路和公平分配资源方面实现避免碰撞。