Generative Adversarial Networks (GANs) learn an implicit generative model from data samples through a two-player game. In this paper, we study the existence of Nash equilibrium of the game which is consistent as the number of data samples grows to infinity. In a realizable setting where the goal is to estimate the ground-truth generator of a stationary Gaussian process, we show that the existence of consistent Nash equilibrium depends crucially on the choice of the discriminator family. The discriminator defined from second-order statistical moments can result in non-existence of Nash equilibrium, existence of consistent non-Nash equilibrium, or existence and uniqueness of consistent Nash equilibrium, depending on whether symmetry properties of the generator family are respected. We further study empirically the local stability and global convergence of gradient descent-ascent methods towards consistent equilibrium.
翻译:通过双人游戏,我们从数据样本中学习了隐含的基因模型。在本文中,我们研究了随着数据样本数量增长到无限程度,游戏中纳什平衡的存在情况。在一个可以实现的环境下,我们的目标是估计固定的高斯过程的地面真相生成者。我们表明,一致的纳什平衡的存在关键取决于歧视家庭的选择。从二阶统计时点定义的歧视者可能导致纳什平衡的不存在、一贯的非纳什平衡的存在,或一致的纳什平衡的存在和独特性,这取决于发电机家庭的对称性是否得到尊重。我们进一步从经验上研究偏向均衡的当地稳定和全球梯度方法的趋同性。