Several applications in optimization, image and signal processing deal with data that belong to the Stiefel manifold St(n, p), that is, the set of n x p matrices with orthonormal columns. Some applications, like the Karcher mean, require evaluating the geodesic distance between two arbitrary points on St(n, p). This can be done by explicitly constructing the geodesic connecting these two points. An existing method for finding geodesics is the leapfrog algorithm of J. L. Noakes. This algorithm is related to the Gauss-Seidel method, a classical iterative method for solving a linear system of equations that can be extended to nonlinear systems. We propose a convergence proof of leapfrog as a nonlinear Gauss-Seidel method. Our discussion is limited to the case of the Stiefel manifold, however it may be generalized to other embedded submanifolds. We discuss other aspects of leapfrog and present some numerical experiments.
翻译:优化、图像和信号处理中的若干应用程序涉及属于Stiefel plentral St(n, p, p) 的数据, 即带有正态列的 n x p 矩阵。 有些应用程序, 如 Karcher 表示的, 需要评估St(n, p) 上两个任意点之间的大地测量距离。 可以通过明确构建连接这两个点的大地测量学来做到这一点。 现有的大地测量学方法是 J. L. Noakes 的跳式算法。 这个算法与高斯- 赛德尔 法有关, 这是一种解决直线式方程系统的经典迭代法, 可以扩展至非线性系统。 我们建议用非线性高斯- 赛德尔 方法来证明跳跃法的趋同证据。 我们的讨论仅限于Stiefel 地块的情况, 但是它可能会被推广到其他嵌入的子段。 我们讨论跳法的其他方面, 并提出一些数字实验 。