Multi-die FPGAs are widely adopted to deploy large hardware accelerators. Two factors impede the performance optimization of HLS designs implemented on multi-die FPGAs. On the one hand, the long net delay due to nets crossing die-boundaries results in an NP-hard problem to properly floorplan and pipeline an application. On the other hand, traditional automated searching flow for HLS directive optimizations targets single-die FPGAs, and hence, it cannot consider the resource constraints on each die and the timing issue incurred by the die-crossings. Further, it leads to an excessively long runtime to legalize the floorplan of HLS designs generated under each group of configurations during directive optimization due to the large design scale. To co-optimize the directives and floorplan of HLS designs on multi-die FPGAs, we propose the FADO framework, which formulates the directive-floorplan co-search problem based on the multi-choice multi-dimensional bin-packing and solves it using an iterative optimization flow. For each step of directive search, a latency-bottleneck-guided greedy algorithm searches for more efficient directive configurations. For floorplanning, instead of repetitively incurring global floorplanning algorithms, we implement a more efficient incremental floorplan legalization algorithm. It mainly applies the worst-fit online bin-packing algorithm to balance the floorplan, together with an offline best-fit-decreasing re-packing to compact the floorplan, followed by pipelining of long wires crossing die-boundaries. Through experiments on HLS designs mixing dataflow and non-dataflow kernels, FADO not only well-automates the co-optimization and finishes within 693X~4925X shorter runtime, compared with DSE assisted by global floorplanning, but also yields an improvement of 1.16X~8.78X in overall workflow execution time after implementation on the Xilinx Alveo U250 FPGA.


翻译:多式FPGA系统被广泛采用,用于部署大型硬件加速器。 两个因素阻碍了多式FPGA系统所实施HLS设计的业绩优化。 一方面,由于网络跨越死地线造成长期净延迟,导致在多式FPGA系统上使用适当的地板平板图和管道应用程序。 另一方面,传统HLS指令的自动搜索流程以单式FPGA为目标,因此,它无法考虑每次死亡的资源限制和死地流引起的时间问题。 此外,它导致将每组配置在多式FPGA系统下产生的HLS系统设计优化。 一方面,由于设计规模大,由于网跨越死地线线线线网,造成长式净延迟,导致HLSFGA系统在每组配置下产生的楼平板平板平板平板平板图上合法化。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
LibRec 精选:基于LSTM的序列推荐实现(PyTorch)
LibRec智能推荐
50+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员