In the 2-choice allocation problem, $m$ balls are placed into $n$ bins, and each ball must choose between two random bins $i, j \in [n]$ that it has been assigned to. It has been known for more than two decades, that if each ball follows the Greedy strategy (i.e., always pick the less-full bin), then the maximum load will be $m/n + O(\log \log n)$ with high probability in $n$ (and $m / n + O(\log m)$ with high probability in $m$). It has remained open whether the same bounds hold in the dynamic version of the same game, where balls are inserted/deleted with up to $m$ balls present at a time. We show that these bounds do not hold in the dynamic setting: already on $4$ bins, there exists a sequence of insertions/deletions that cause {Greedy} to incur a maximum load of $m/4 + \Omega(\sqrt{m})$ with probability $\Omega(1)$ -- this is the same bound as if each ball is simply assigned to a random bin! This raises the question of whether any 2-choice allocation strategy can offer a strong bound in the dynamic setting. Our second result answers this question in the affirmative: we present a new strategy, called ModulatedGreedy, that guarantees a maximum load of $m / n + O(\log m)$, at any given moment, with high probability in $m$. Generalizing ModulatedGreedy, we obtain dynamic guarantees for the $(1 + \beta)$-choice setting, and for the setting of balls-and-bins on a graph. Finally, we consider a setting in which balls can be reinserted after they are deleted, and where the pair $i, j$ that a given ball uses is consistent across insertions. This seemingly small modification renders tight load balancing impossible: on 4 bins, any strategy that is oblivious to the specific identities of balls must allow for a maximum load of $m/4 + poly(m)$ at some point in the first $poly(m)$ insertions/deletions, with high probability in $m$.


翻译:在 2 种曲解分配问题中, 美元球被放置在 $n 的 bin, 每个球必须选择 $i, j/4 以 [n] 美元 。 20多年来, 众所周知, 如果每个球都遵循贪婪战略( 总是选择不全的 bin), 那么最大负荷将是 $/n + O( log\ log n) 美元, 概率很高 $( 美元 / n + O) 的 bin, 每个球必须选择两个随机的 bin 美元 美元 美元, 每个球必须选择 美元 美元, 美元 美元 美元 / 美元 + 美元 以 美元 的 binbin 。 这样的插入/ deletion 可能会在 4 bind 上出现一个插入/ deliftle 的序列, 任何 以 = 美元 + 美元 以 美元 以 美元 以 美元 以 美元 以 美元 以 美元 以 美元 以 美元 以 美元 以 以 美元 美元 以 美元 以 以 以 美元 以 美元 以 以 美元 美元 以 以 以 以 美元 美元 以 以 以 以 以 以 美元 美元 以 以 以 以 以 以 以 美元 以 以 以 以 美元 美元 美元 美元 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 美元 美元 美元 以 以 以 以 以 以 美元 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以 以

0
下载
关闭预览

相关内容

最新《Transformers模型》教程,64页ppt
专知会员服务
314+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月3日
A Statistical Framework for Replicability
Arxiv
0+阅读 · 2022年7月1日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月30日
Arxiv
0+阅读 · 2022年6月29日
VIP会员
相关VIP内容
最新《Transformers模型》教程,64页ppt
专知会员服务
314+阅读 · 2020年11月26日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员