We construct a classically verifiable succinct interactive argument for quantum computation (BQP) with communication complexity and verifier runtime that are poly-logarithmic in the runtime of the BQP computation (and polynomial in the security parameter). Our protocol is secure assuming the post-quantum security of indistinguishability obfuscation (iO) and Learning with Errors (LWE). This is the first succinct argument for quantum computation in the plain model; prior work (Chia-Chung-Yamakawa, TCC '20) requires both a long common reference string and non-black-box use of a hash function modeled as a random oracle. At a technical level, we revisit the framework for constructing classically verifiable quantum computation (Mahadev, FOCS '18). We give a self-contained, modular proof of security for Mahadev's protocol, which we believe is of independent interest. Our proof readily generalizes to a setting in which the verifier's first message (which consists of many public keys) is compressed. Next, we formalize this notion of compressed public keys; we view the object as a generalization of constrained/programmable PRFs and instantiate it based on indistinguishability obfuscation. Finally, we compile the above protocol into a fully succinct argument using a (sufficiently composable) succinct argument of knowledge for NP. Using our framework, we achieve several additional results, including - Succinct arguments for QMA (given multiple copies of the witness), - Succinct non-interactive arguments for BQP (or QMA) in the quantum random oracle model, and - Succinct batch arguments for BQP (or QMA) assuming post-quantum LWE (without iO).
翻译:我们为量子计算(BQP)构建了一个具有通信复杂性和校验运行时间且在 BQP 计算( 和安全参数中的多数值计算) 运行时具有多数值性的传统、 可核实的简单互动参数。 我们的协议是安全的, 假设在量子计算( iO) 和 学习错误( LWE) 的后量子计算( BQP ) 。 这是在简单模型中进行量子计算的第一个简单参数。 先前的工作( Chia- Chung- Yamakawa, TCC'20) 需要长期通用的参考字符串和非黑框使用以随机或触手动为模型的 hash 函数。 在技术层面, 我们重新审视建立可常规的量子计算( Madd) 框架的框架。 我们认为, 马德( 由许多公钥组成) 的校验第一个信息( 由许多公钥组成) 需要压缩。 下一步, 我们正式将精细的质化的量参数 QMA, 将我们的直压的硬性 Qralalalalalalal 的参数作为一般的 。