项目名称: 含执行器死区/滞环非线性系统的模糊自适应容错控制
项目编号: No.61503221
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 自动化技术、计算机技术
项目作者: 侯传晶
作者单位: 山东建筑大学
项目金额: 21万元
中文摘要: 执行器死区/滞环特性往往会恶化控制系统性能甚至导致系统不稳定,同时含执行器死区/滞环和执行器故障非线性系统的输出反馈容错控制问题极具挑战性,亟待寻求新思路新理论予以突破。为此本项目确立的研究内容有:利用模型变换技术将含有执行器故障、死区/滞环特性的系统转换成不显含故障信息、执行器死区/滞环的新系统;针对新系统应用模糊逻辑系统逼近未知非线性函数,根据隐函数定理构造模糊自适应状态观测器,并藉此建立系统模糊自适应容错控制器和设计未知参数自适应变化率;应用Lyapunov稳定理论和Barbalat引理证明闭环系统稳定性和误差收敛性;研究所提出的模糊自适应容错控制算法在工程实际中应用,以验证该方法的有效性。本项目对于改进现有状态观测器、拓宽模糊自适应容错控制研究领域,具有重要理论价值和实际意义。
中文关键词: 非线性系统;容错控制;死区特性;滞环特性;模糊自适应控制
英文摘要: Dead-zone and Hysteresis exist in a wide range of physical actuators. Control of such a system is typically challenging in the presence of actuator dead-zone/hysteresis, actuator failures via output feedback. They severely limit system performance, even lead to instability. This project focuses on fuzzy adaptive fault-tolerant control for nonlinear systems with actuator dead-zone/hysteresis via output feedback. The main research issues are as follows: The system can be transformed into a new system that does not contain actuator fault and actuator dead-zone/hysteresis explicitly. For the new system, fuzzy logic systems are employed to approximate the unknown nonlinear functions and fuzzy adaptive observer can be constructed by the implicit function theorem. Based on the observer, fuzzy adaptive fault-tolerant controller and the parameters updating law are proposed by the backstepping method. The Lyapunov theory is used to prove the stability of closed-loop system while tracking errors converge to zero by Barbalat lemma. The proposed fuzzy adaptive fault-tolerant controller are applied to some real systems and simulation results are presented to show the effectiveness of the proposed method. This project improves the traditional fuzzy adaptive observer and enlarges the research fields of fuzzy adaptive fault tolerant control, which makes the project has the theoretical value and practical meaning.
英文关键词: nonlinear system; fault-tolerant control; dead-zone characteristics;hysteresis characteristics;fuzzy adaptive control