Given a graph and two vertex sets satisfying a certain feasibility condition, a reconfiguration problem asks whether we can reach one vertex set from the other by repeating prescribed modification steps while maintaining feasibility. In this setting, Mouawad et al. [IPEC 2014] presented an algorithmic meta-theorem for reconfiguration problems that says if the feasibility can be expressed in monadic second-order logic (MSO), then the problem is fixed-parameter tractable parameterized by $\textrm{treewidth} + \ell$, where $\ell$ is the number of steps allowed to reach the target set. On the other hand, it is shown by Wrochna [J. Comput. Syst. Sci. 2018] that if $\ell$ is not part of the parameter, then the problem is PSPACE-complete even on graphs of bounded bandwidth. In this paper, we present the first algorithmic meta-theorems for the case where $\ell$ is not part of the parameter, using some structural graph parameters incomparable with bandwidth. We show that if the feasibility is defined in MSO, then the reconfiguration problem under the so-called token jumping rule is fixed-parameter tractable parameterized by neighborhood diversity. We also show that the problem is fixed-parameter tractable parameterized by $\textrm{treedepth} + k$, where $k$ is the size of sets being transformed. We finally complement the positive result for treedepth by showing that the problem is PSPACE-complete on forests of depth $3$.
翻译:鉴于一个图表和两个顶端数据集符合某种可行性条件,重组问题会问我们能否在保持可行性的同时,通过重复规定的修改步骤,达到一个顶端。在这个背景下,Mouawad et al.[IP 2014] 提出了一个用于重组问题的算法元理论,其中规定,如果可行性可以用月经二阶逻辑(MSO)来表示,那么问题就是一个固定参数,用$\textrm{trewidth} +\ell$来表示,美元是允许达到目标集的步骤数目。另一方面,Wrochna[J.Compuut.Syst. Sci. 2018] 显示,如果美元不是参数的一部分,那么问题就在于,即使以捆绑带带带带带带的图显示,是否可行,那么我们用一些可比较的图表参数来补充参数中的美元。我们显示,如果以固定的模型来显示,在固定的模型中,则以固定的模型来显示,我们以固定的平面平面平面的平面平面平面平面的平面平面平面平面平面的平面。