Randomized quadratures for integrating functions in Sobolev spaces of order $\alpha \ge 1$, where the integrability condition is with respect to the Gaussian measure, are considered. In this function space, the optimal rate for the worst-case root-mean-squared error (RMSE) is established. Here, optimality is for a general class of quadratures, in which adaptive non-linear algorithms with a possibly varying number of function evaluations are also allowed. The optimal rate is given by showing matching bounds. First, a lower bound on the worst-case RMSE of $O(n^{-\alpha-1/2})$ is proven, where $n$ denotes an upper bound on the expected number of function evaluations. It turns out that a suitably randomized trapezoidal rule attains this rate, up to a logarithmic factor. A practical error estimator for this trapezoidal rule is also presented. Numerical results support our theory.
翻译:用于整合Sobolev 空间函数的随机二次曲线 $\ alpha\ ge 1$, 此处考虑的是与高斯测量值相关的融合条件。 在此函数空间中, 确定了最坏情况根正方差错误( RMSE) 的最佳率 。 这里, 优化是一般类的二次曲线, 允许使用适应性非线性算法, 其函数评价数量可能各不相同。 最佳比率是通过显示匹配界限来给出的。 首先, 最坏情况的 RMSE $O (n-\\ alpha-1/2}) 的下限得到证明, $0 表示预期函数评价数的上限。 由此发现, 合适的随机捕捉性规则可以达到这一速率, 最高为对数系数。 也展示了这个捕捉性动物规则的实用误算符。 数字结果支持我们的理论 。