Here we show an application of our recently proposed information-geometric approach to compositional data analysis (CoDA). This application regards relative count data, which are, e.g., obtained from sequencing experiments. First we review in some detail a variety of necessary concepts ranging from basic count distributions and their information-geometric description over the link between Bayesian statistics and shrinkage to the use of power transformations in CoDA. We then show that powering, i.e., the equivalent to scalar multiplication on the simplex, can be understood as a shrinkage problem on the tangent space of the simplex. In information-geometric terms, traditional shrinkage corresponds to an optimization along a mixture (or m-) geodesic, while powering (or, as we call it, exponential shrinkage) can be optimized along an exponential (or e-) geodesic. While the m-geodesic corresponds to the posterior mean of the multinomial counts using a conjugate prior, the e-geodesic corresponds to an alternative parametrization of the posterior where prior and data contributions are weighted by geometric rather than arithmetic means. To optimize the exponential shrinkage parameter, we use mean-squared error as a cost function on the tangent space. This is just the expected squared Aitchison distance from the true parameter. We derive an analytic solution for its minimum based on the delta method and test it via simulations. We also discuss exponential shrinkage as an alternative to zero imputation for dimension reduction and data normalization.


翻译:这里我们展示了我们最近提出的用于组成数据分析(CoDA)的信息地理测量方法的应用。 这个应用涉及相对计数数据, 例如从测序实验中获得的相对计数数据。 首先,我们比较详细地审查一系列必要的概念, 从基本计数分布及其关于Bayesian统计和缩缩水与CoDA中功率转换联系的信息地理测量描述。 我们然后显示, 动力, 即相当于简单x 上的算法乘法倍增, 可以被理解为简单x正对等空间的缩缩缩缩问题。 在信息地理测量术语中, 传统缩放相当于混合( 或 m-) 的优化, 而动力( 或我们称之为指数缩水) 与 CoDA 相连接。 虽然 m- 地理计算与多数值的后向值相匹配, 之前的算法与之前的直径比平比 。 以正向模型的平偏移法, 其预测算法的精确度比前的直径直径精确度 。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
84+阅读 · 2021年12月9日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员