Marginal expected shortfall is unquestionably one of the most popular systemic risk measures. Studying its extreme behaviour is particularly relevant for risk protection against severe global financial market downturns. In this context, results of statistical inference rely on the bivariate extreme values approach, disregarding the extremal dependence among a large number of financial institutions that make up the market. In order to take it into account we propose an inferential procedure based on the multivariate regular variation theory. We derive an approximating formula for the extreme marginal expected shortfall and obtain from it an estimator and its bias-corrected version. Then, we show their asymptotic normality, which allows in turn the confidence intervals derivation. Simulations show that the new estimators greatly improve upon the performance of existing ones and confidence intervals are very accurate. An application to financial returns shows the utility of the proposed inferential procedure. Statistical results are extended to a general $\beta$-mixing context that allows to work with popular time series models with heavy-tailed innovations.


翻译:边际预期损失(MES)无疑是最受欢迎的系统性风险度量之一。研究它的极端行为对于防范严重的全球金融市场下跌尤为重要。在这种情况下,统计推断结果依赖于双变量极值方法,忽视了组成市场的大量金融机构之间的极端依赖性。为了考虑这一点,我们提出了一种基于多元常规变化理论的推断过程。我们推导出极端边际预期损失的近似公式,并从中得出估计量及其偏差校正版本。然后,我们展示了它们的渐近正态性,从而允许置信区间的导出。模拟结果表明,新的估计器极大地提高了现有估计器的性能,并且置信区间非常准确。对金融回报的应用显示了所提出的推断过程的实用性。统计结果扩展为常见的具有重尾创新的时间序列模型下的一般$\beta$-混合上下文。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
105+阅读 · 2021年8月27日
专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年6月1日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
0+阅读 · 2023年5月31日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员