A Lattice is a partially ordered set where both least upper bound and greatest lower bound of any pair of elements are unique and exist within the set. K\"{o}tter and Kschischang proved that codes in the linear lattice can be used for error and erasure-correction in random networks. Codes in the linear lattice have previously been shown to be special cases of codes in modular lattices. Two well known classifications of modular lattices are geometric and distributive lattices. We have identified the unique criterion which makes a geometric lattice distributive, thus characterizing all finite geometric distributive lattices. Our characterization helps to prove a conjecture regarding the maximum size of a distributive sublattice of a finite geometric lattice and identify the maximal case. The Whitney numbers of the class of geometric distributive lattices are also calculated. We present a few other applications of this unique characterization to derive certain results regarding linearity and complements in the linear lattice.
翻译:Lattice 是一个部分定序集, 任何元素的最小上界和最大下界都具有独特性, 并且在集中存在。 K\ “ { o}tter 和 Kschischang ” 和 Kschischang 证明线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线性线