The recursive and hierarchical structure of full rooted trees is applicable to represent statistical models in various areas, such as data compression, image processing, and machine learning. In most of these cases, the full rooted tree is not a random variable; as such, model selection to avoid overfitting becomes problematic. A method to solve this problem is to assume a prior distribution on the full rooted trees. This enables overfitting to be avoided based on the Bayes decision theory. For example, by assigning a low prior probability to a complex model, the maximum a posteriori estimator prevents overfitting. Furthermore, overfitting can be avoided by averaging all the models weighted by their posteriors. In this paper, we propose a probability distribution on a set of full rooted trees. Its parametric representation is suitable for calculating the properties of our distribution using recursive functions, such as the mode, expectation, and posterior distribution. Although such distributions have been proposed in previous studies, they are only applicable to specific applications. Therefore, we extract their mathematically essential components and derive new generalized methods to calculate the expectation, posterior distribution, etc.
翻译:完全根植树木的递归和等级结构适用于代表数据压缩、图像处理和机器学习等各个领域的统计模型。 在多数情况下,完全根植的树不是随机的变量;因此,为了避免过大而选择模型会产生问题。 解决这个问题的方法是假定在完全根植的树木上事先分配。 这使得根据贝耶斯决定理论可以避免过度配制。 例如,通过给一个复杂模型分配一个低的先前概率, 最高后世估计器可以防止过度配制。 此外, 通过平均使用其后世加权的所有模型可以避免过度配制。 在本文中,我们提议在一组完全根植树上进行概率分布。 它的参数表示方式、 期望 和 后世分布 等循环函数, 适合于计算我们分布的属性。 虽然在以前的研究中已经提出了这种分配方法, 但是它们只适用于具体的应用。 因此, 我们提取其数学基本组成部分, 并产生新的通用方法来计算预期值、 后世分布等。