We formalize the tail redundancy of a collection of distributions over a countably infinite alphabet, and show that this fundamental quantity characterizes the asymptotic per-symbol redundancy of universally compressing sequences generated iid from a collection $\mathcal P$ of distributions over a countably infinite alphabet. Contrary to the worst case formulations of universal compression, finite single letter (average case) redundancy of $\mathcal P$ does not automatically imply that the expected redundancy of describing length-$n$ strings sampled iid from $\mathcal P$ grows sublinearly with $n$. Instead, we prove that universal compression of length-$n$ \iid sequences from $\mathcal P$ is characterized by how well the tails of distributions in $\mathcal P$ can be universally described, showing that the asymptotic per-symbol redundancy of iid strings is equal to the tail redundancy.


翻译:我们正式确定在可计算到无限字母上分发的集合尾部冗余,并表明这一基本数量是从一个可计算到无限字母上分发的集合$\mathcal P$中产生的普遍压缩序列的无症状单体冗余。 与通用压缩最差的情况配方相反, 限定单字母(平均)冗余$\mathcal P$并不自动意味着从$\mathcal P$中描述长度- $n 抽取的字符串 Iid 的预期冗余。 相反,我们证明从$\mathcal P$中普遍压缩长度- $n\ iid 序列的特性是能够普遍描述到$\mathcal P$的尾尾部,这表明iid字符的无症状/symbol冗余等于尾部冗余。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
已删除
将门创投
7+阅读 · 2020年3月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Arxiv
0+阅读 · 2022年1月5日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【新书】Java企业微服务,Enterprise Java Microservices,272页pdf
相关资讯
已删除
将门创投
7+阅读 · 2020年3月13日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】SLAM相关资源大列表
机器学习研究会
10+阅读 · 2017年8月18日
Top
微信扫码咨询专知VIP会员