In Generalized Zero-Shot Learning (GZSL), unseen categories (for which no visual data are available at training time) can be predicted by leveraging their class embeddings (e.g., a list of attributes describing them) together with a complementary pool of seen classes (paired with both visual data and class embeddings). Despite GZSL is arguably challenging, we posit that knowing in advance the class embeddings, especially for unseen categories, is an actual limit of the applicability of GZSL towards real-world scenarios. To relax this assumption, we propose Open Zero-Shot Learning (OZSL) to extend GZSL towards the open-world settings. We formalize OZSL as the problem of recognizing seen and unseen classes (as in GZSL) while also rejecting instances from unknown categories, for which neither visual data nor class embeddings are provided. We formalize the OZSL problem introducing evaluation protocols, error metrics and benchmark datasets. We also suggest to tackle the OZSL problem by proposing the idea of performing unknown feature generation (instead of only unseen features generation as done in GZSL). We achieve this by optimizing a generative process to sample unknown class embeddings as complementary to the seen and the unseen. We intend these results to be the ground to foster future research, extending the standard closed-world zero-shot learning (GZSL) with the novel open-world counterpart (OZSL).
翻译:在普遍零热学习(GZSL)中,通过利用班级嵌入(例如,一个特征列表,描述它们)以及一组可观类的补充集合(包括视觉数据和班级嵌入),可以预测隐蔽类别(在培训时没有视觉数据),但GZSL可以说具有挑战性。 尽管GZSL具有挑战性,但我们假设事先了解班级嵌入,特别是对于隐蔽类而言,是GZSL对真实世界情景的适用性的实际限制。为了放松这一假设,我们提议开放零热学习(OZSL)将GZSL扩大到开放世界设置。我们正式将OZSL定为识别和隐蔽类(如GZSL一样)的问题,同时拒绝从未知类别中出现的情况,因为没有提供视觉数据或课级嵌入。我们正式了OZSL的问题,引入了评估协议、错误度和基准数据集。我们还建议解决OZSL的问题,办法是提出一个未知的生成功能概念(而不是只将隐形地特征生成,而将GZSLSL的基因升级成为我们所看到的轨道。我们看到,这是一个秘密的升级的升级的学习。我们通过一个不为升级的轨道,我们所看到的升级的升级到升级的GSLSLSLOSLOSLMZZZZZZZ。