This paper studies the problem of domain division problem which aims to segment instances drawn from different probabilistic distributions. Such a problem exists in many previous recognition tasks, such as Open Set Learning (OSL) and Generalized Zero-Shot Learning (G-ZSL), where the testing instances come from either seen or novel/unseen classes of different probabilistic distributions. Previous works focused on either only calibrating the confident prediction of classifiers of seen classes (W-SVM), or taking unseen classes as outliers. In contrast, this paper proposes a probabilistic way of directly estimating and fine-tuning the decision boundary between seen and novel/unseen classes. In particular, we propose a domain division algorithm of learning to split the testing instances into known, unknown and uncertain domains, and then conduct recognize tasks in each domain. Two statistical tools, namely, bootstrapping and Kolmogorov-Smirnov (K-S) Test, for the first time, are introduced to discover and fine-tune the decision boundary of each domain. Critically, the uncertain domain is newly introduced in our framework to adopt those instances whose domain cannot be predicted confidently. Extensive experiments demonstrate that our approach achieved the state-of-the-art performance on OSL and G-ZSL benchmarks.
翻译:本文研究域分解问题, 目的是分解不同概率分布的分解实例。 这个问题存在于许多先前的识别任务中, 比如 Open Set Learning( OSL) 和通用零热学习( G- ZSL), 测试案例来自不同概率分布的可见或新颖/新颖的类别。 以前的工作侧重于仅仅校正对可见类别分类( W- SVM) 的可靠预测, 或将看不见的类别作为异端。 相反, 本文提出了一种直接估计和微调所见和新颖/ 看不见的类别之间决定界限的概率性方法。 特别是, 我们提出了一种域划分算法, 学习将测试事件分为已知、 未知和不确定的领域, 然后在每个领域执行认知任务。 之前的两种统计工具, 即靴式和 Kolmogorov- Smirnov ( K-S-S) 测试, 第一次被引入来发现和微调每个领域的决定界限。 关键的是, 我们框架中新引入的不确定域域, 以展示我们无法预测到的域域的GSL- 。