We introduce Joint Multidimensional Scaling, a novel approach for unsupervised manifold alignment, which maps datasets from two different domains, without any known correspondences between data instances across the datasets, to a common low-dimensional Euclidean space. Our approach integrates Multidimensional Scaling (MDS) and Wasserstein Procrustes analysis into a joint optimization problem to simultaneously generate isometric embeddings of data and learn correspondences between instances from two different datasets, while only requiring intra-dataset pairwise dissimilarities as input. This unique characteristic makes our approach applicable to datasets without access to the input features, such as solving the inexact graph matching problem. We propose an alternating optimization scheme to solve the problem that can fully benefit from the optimization techniques for MDS and Wasserstein Procrustes. We demonstrate the effectiveness of our approach in several applications, including joint visualization of two datasets, unsupervised heterogeneous domain adaptation, graph matching, and protein structure alignment. The implementation of our work is available at https://github.com/BorgwardtLab/JointMDS
翻译:我们引入了 " 联合多层面缩放 ",这是对未经监督的多元校正的一种新颖方法,它将两个不同领域的数据集绘制成一个共同的低维欧clidean空间。我们的方法将多维缩放(MDS)和瓦塞尔斯坦·普罗克鲁斯分析整合为一个联合优化问题,以同时生成数据中的等分嵌,并从两个不同的数据集中学习实例之间的对应对应,而只是要求将数据集内部的对等差异作为输入。这一独特特征使我们的方法适用于数据集,而没有输入功能,例如解决不精确的图表匹配问题。我们建议采用一个交替优化方案,以解决能够充分受益于MDS和瓦塞斯坦·普罗克鲁斯优化技术的问题。我们在若干应用中展示了我们的方法的有效性,包括两个数据集的联合可视化、不超超异谱域适应、图表匹配和蛋白质结构的校准。我们工作的实施可以在 https://github.com/BorgwardLab/UniMDS中查阅。我们的工作的执行情况可在 https://github.com/BarwardLab/UniMDS.