Due to the scarcity of labeled data, Contrastive Self-Supervised Learning (SSL) frameworks have lately shown great potential in several medical image analysis tasks. However, the existing contrastive mechanisms are sub-optimal for dense pixel-level segmentation tasks due to their inability to mine local features. To this end, we extend the concept of metric learning to the segmentation task, using a dense (dis)similarity learning for pre-training a deep encoder network, and employing a semi-supervised paradigm to fine-tune for the downstream task. Specifically, we propose a simple convolutional projection head for obtaining dense pixel-level features, and a new contrastive loss to utilize these dense projections thereby improving the local representations. A bidirectional consistency regularization mechanism involving two-stream model training is devised for the downstream task. Upon comparison, our IDEAL method outperforms the SoTA methods by fair margins on cardiac MRI segmentation. Code available: https://github.com/hritam-98/IDEAL-ICASSP23
翻译:由于缺乏标签数据,自学框架最近在一些医学图像分析任务中显示出巨大的潜力,然而,现有的对比性机制由于无法挖掘当地特征,因此对于密集的像素级分解任务来说是次最佳的。为此,我们将衡量性学习的概念扩大到分化任务,在深层编码网络的训练前采用密集(不同)不同学习,并采用半监督模式微调下游任务。具体地说,我们提议为获得密集的像素级特征提供一个简单的共变投影头,并为利用这些密集的投影来改善当地表现而造成新的反射损失。为下游任务设计了一个双向一致性正规化机制,包括双向模式培训。比较后,我们的IDAL方法在心脏MRI分解法上通过公平边距优于 SoTA方法。代码:https://github.com/hritam-98/IDEAAL-ICASSP23。</s>