Recently anomaly detection has drawn much attention in diagnosing ocular diseases. Most existing anomaly detection research in fundus images has relatively large anomaly scores in the salient retinal structures, such as blood vessels, optical cups and discs. In this paper, we propose a Region and Spatial Aware Anomaly Detection (ReSAD) method for fundus images, which obtains local region and long-range spatial information to reduce the false positives in the normal structure. ReSAD transfers a pre-trained model to extract the features of normal fundus images and applies the Region-and-Spatial-Aware feature Combination module (ReSC) for pixel-level features to build a memory bank. In the testing phase, ReSAD uses the memory bank to determine out-of-distribution samples as abnormalities. Our method significantly outperforms the existing anomaly detection methods for fundus images on two publicly benchmark datasets.
翻译:最近发现的异常现象在诊断眼科疾病时引起了人们的极大注意,在Fundus图像中,大多数现有的异常现象检测研究在明显的视网膜结构(如血管、光学杯和光碟)中都有较大的异常分数。在本文件中,我们建议对Fundus图像采用一种区域和空间认知异常检测(ReSAD)方法,该方法获取了本地区域和长距离空间信息,以减少正常结构中的假阳性。ReSAD传输了一种预先培训的模型,以提取普通的fundus图像的特征,并应用像素级特征的区域和空间软件特征组合模块(RESC)来建立记忆库。在测试阶段,RESAD利用记忆库来确定分布外样本的异常情况。我们的方法大大超过两个公开基准数据集中现有的异常现象检测方法。</s>