Trap spaces of a Boolean network (BN) are the sub-hypercubes closed by the function of the BN. A trap space is minimal if it does not contain any smaller trap space. Minimal trap spaces have applications for the analysis of dynamic attractors of BNs with various update modes. This paper establishes computational complexity results of three decision problems related to minimal trap spaces of BNs: the decision of the trap space property of a sub-hypercube, the decision of its minimality, and the decision of the belonging of a given configuration to a minimal trap space. Under several cases on Boolean function specifications, we investigate the computational complexity of each problem. In the general case, we demonstrate that the trap space property is coNP-complete, and the minimality and the belonging properties are $\Pi_2^{\text P}$-complete. The complexities drop by one level in the polynomial hierarchy whenever the local functions of the BN are either unate, or are specified using truth-table, binary decision diagrams, or double-DNF (Petri net encoding): the trap space property can be decided in P, whereas the minimality and the belonging are coNP-complete. When the BN is given as its functional graph, all these problems can be decided by deterministic polynomial time algorithms.
翻译:Boolean 网络(BN) 的陷阱空间是 BN 功能封闭的亚高频立方体 。 陷阱空间如果不包含任何较小的陷阱空间, 则极小。 最小陷阱空间可以应用各种更新模式分析 BN 的动态吸引者。 本文确定了与 BN 最小陷阱空间有关的三个决定问题的计算复杂性结果: 亚超立方 的陷阱空间属性决定, 其最小性决定, 以及将给定的配置归属于一个最小的陷阱空间空间。 在 Boolean 函数的多个案例中, 我们调查每个问题的计算复杂性。 在一般情况下, 我们证明陷阱空间属性是 CoNP- 完整的, 最小性和属性属性是 $\ p_ 2 ⁇ text P} 。 当 BN 的本地功能功能失效时, 或者使用事实表格、 二进式决定的配置图, 或者使用双DNF (Petri 网络编码), 复杂性会降低。 陷阱空间属性是最小的, 其功能性能确定为最小的 。