We aim at investigating the solvability/insolvability of nondeterministic logarithmic-space (NL) decision, search, and optimization problems parameterized by size parameters using simultaneously polynomial time and sub-linear space on multi-tape deterministic Turing machines. We are particularly focused on a special NL-complete problem, 2SAT parameterized by the total number $m_{vbl}(\phi)$ of Boolean variables of each given Boolean formula $\phi$. It is shown that 2SAT with $n$ variables and $m$ clauses can be solved simultaneously polynomial time and $(n/2^{c\sqrt{\log{n}}})\, polylog(m+n)$ space for an absolute constant $c>0$. This fact inspires us to propose a new, practical working hypothesis, called the linear space hypothesis (LSH), which states that 2SAT$_3$ -- a restricted variant of 2SAT in which each variable of a given 2CNF formula appears at most 3 times in the form of literals -- cannot be solved simultaneously in polynomial time using strictly ``sub-linear'' (i.e., $m_{vbl}(x)^{\varepsilon}\, polylog(|x|)$ for a certain fixed constant $\varepsilon\in[0,1)$) space on all instances $x$. Immediate consequences of this working hypothesis include $\mathrm{L}\neq\mathrm{NL}$, $\mathrm{LOGDCFL}\neq\mathrm{LOGCFL}$, and $\mathrm{SC}\neq \mathrm{NSC}$. For our investigation, since standard logarithmic-space reductions may no longer preserve polynomial-time sub-linear-space complexity, we need to introduce a new, restricted notion of ``short reduction.'' For a syntactically restricted version of NL, called Syntactic NL$_{\omega}$ or SNL$_{\omega}$, $(\mathrm{2SAT}_3,m_{vbl})$ is in fact hard for parameterized SNL$_{\omega}$ via such short reductions. This fact supports the legitimacy of our working hypothesis.


翻译:我们的目标是调查非确定性对数空间( NL) 决定、搜索和优化问题的溶性/溶性。 我们特别侧重于一个特殊的 NL 问题, 2SAT 参数由每个给定的 Boolean 公式的总计 $\vbl}(phi) 来分析 美元; 显示有 美元变量和 美元条款的2SAT 能够同时解决 多元时间和多层确定性图机器的亚线性空间参数。 多层(m) 用于绝对恒定 美元 。 这一事实激励我们提出一个新的实用的工作假设, 称之为线性空间假设(LSH), 它表示 2SAT 美元 - 3美元 - 限量变量, 其中给定的2 CN 公式每个变量都可以在每三倍的 平面时间里程调查中出现 。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
已删除
将门创投
11+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
已删除
将门创投
11+阅读 · 2019年8月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员