Fluid-structure interactions are central to many bio-molecular processes, and they impose a great challenge for computational and modeling methods. In this paper, we consider the immersed boundary method (IBM) for biofluid systems, and to alleviate the computational cost, we apply reduced-order techniques to eliminate the degrees of freedom associated with a large number of fluid variables. We show how reduced models can be derived using Petrov-Galerkin projection and subspaces that maintain the incompressibility condition. More importantly, the reduced-order model is shown to preserve the Lyapunov stability. We also address the practical issue of computing coefficient matrices in the reduced-order model using an interpolation technique. The efficiency and robustness of the proposed formulation are examined with test examples from various applications.


翻译:流体结构相互作用是许多生物分子过程的核心,对计算和建模方法构成巨大的挑战。在本文件中,我们考虑了生物流体系统浸入的边界法(IBM),并且为了降低计算成本,我们运用了减序技术来消除与大量流体变量相关的自由度。我们用Petrov-Galerkin投影和保持不压缩状态的子空间来显示如何减少模型。更重要的是,减序模型是为了维护Lyapunov的稳定。我们还用一种内推法来解决减序模型中计算系数矩阵的实际问题。我们用各种应用的试验实例来审查拟议公式的效率和稳健性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
【ICLR2021】常识人工智能,77页ppt
专知会员服务
73+阅读 · 2021年5月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年8月17日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员