Nonlinear model order reduction has opened the door to parameter optimization and uncertainty quantification in complex physics problems governed by nonlinear equations. In particular, the computational cost of solving these equations can be reduced by means of local reduced-order bases. This article examines the benefits of a physics-informed cluster analysis for the construction of cluster-specific reduced-order bases. We illustrate that the choice of the dissimilarity measure for clustering is fundamental and highly affects the performances of the local reduced-order bases. It is shown that clustering with an angle-based dissimilarity on simulation data efficiently decreases the intra-cluster Kolmogorov $N$-width. Additionally, an a priori efficiency criterion is introduced to assess the relevance of a ROM-net, a methodology for the reduction of nonlinear physics problems introduced in our previous work in [T. Daniel, F. Casenave, N. Akkari, D. Ryckelynck, Model order reduction assisted by deep neural networks (ROM-net), Advanced Modeling and Simulation in Engineering Sciences 7 (16), 2020]. This criterion also provides engineers with a very practical method for ROM-nets' hyperparameters calibration under constrained computational costs for the training phase. On five different physics problems, our physics-informed clustering strategy significantly outperforms classic strategies for the construction of local reduced-order bases in terms of projection errors.
翻译:在非线性方程式的复杂物理问题中,非线性模型的减少为参数优化和不确定性量化打开了门,在非线性方程式的复杂物理问题中,参数优化和不确定性量化的大门已经打开。特别是,解决这些方程式的计算成本可以通过当地减序基数来降低。本篇文章审查了物理学知情的集群分析对于建造特定组别减序基数的好处。我们说明,为集群选择差异性计量方法对于当地减序基数的性能影响很大,显示在模拟数据上存在角度差异的集群有效地减少了科尔莫戈罗夫内部的数值($-width)。此外,引入了一种先验效率标准来评估ROM-net的相关性,这是减少非线性物理学问题的方法。 在[T. Daniel, F. Casenave, N. Akkakakari, D. Ryckelylyyncknc, 在深神经网络(ROM-net) 高级模型和工程科学模拟学模拟(7(16,2020年 )的协助下,该标准也为工程师提供了一种非常实用的方法,用以评估基础基础基础基础的标准化基础的标准化基础的模型基础,在五级的模型的模型分析阶段的模型分析战略中,在不同的研修修程上,在降低成本。